Crystallization kinetics of bulk amorphous $(Se_{65}Te_{35})_{100-x}Sb_x$

M. MEHDI, G. BRUN, J. C. TEDENAC

Laboratoire de Physicochimie des Materiaux Solides, URA D0407, Université de Montpellier II, Sciences et Techniques du Languedoc, 34095 Montpellier cedex 05, France

Kinetic studies of crystallization in $(Se_{65}Te_{35})_{100-x}Sb_x$ with $0 \le x \le 10$ glasses, using the differential scanning calorimetry technique, were performed. Crystallization enthalpy data, ΔH_c , were collected as a function of composition. The crystallization data were examined in terms of recent analyses developed for non-isothermal crystallization studies, to arrive at E_c . The results indicate bulk nucleation and crystallization with two- and three-dimensional growth, respectively, for the $(Se_{65}Te_{35})_{98}Sb_2$ and $(Se_{65}Te_{35})_{92}Sb_8$ glass composition.

1. Introduction

Because it is widely accepted that the addition of a third element to binary chalcogenide glasses produces a higher stability of these glasses, the effects of an element as an additive to binary glasses have been extensively studied. The present paper report kinetic studies of crystallization in $(Se_{65}Te_{35})_{100-x}Sb_x$ glasses using the differential scanning calorimetry (DSC) technique with a view to understand the mechanism of crystallization in these glasses. The activation energy, $E_{\rm c}$, has been evaluated from the heating-rate dependence of $T_{\rm c}$. Crystallization studies have been made under non-isothermal conditions with samples heated at several uniform rates. Using a recent analysis developed for non-isothermal crystallization studies, information on some aspects of the crystallization process has been obtained.

2. Composition dependence of the crystallization enthalpy, ΔH_{c}

From the area of the exothermic peaks at different heating rates, ΔH_c was evaluated for all the compositions. For a given composition, ΔH_c was found to be approximately the same for all the heating rates. Fig. 1 shows the variation of ΔH_c with composition. The vertical bars denote the spread in ΔH_c obtained for all the heating rates used in the experiment. ΔH_c could not be evaluated at a heating rate above 10 K min⁻¹, because the Sb₂Se₃ crystallization exothermic peak occurs before completion of the main crystallization (see [1]) for the compositions x > 4.

It is interesting to compare the composition dependence, $\Delta H_{\rm c}$, with the corresponding $(T_{\rm c}-T_{\rm g})$ of these glasses. Because the release of energy, $\Delta H_{\rm c}$, is associated with the metastability of the glasses, large values of $\Delta H_{\rm c}$ are associated with the least stable glasses, namely, glasses with smaller $(T_{\rm c}-T_{\rm g})$ values.

This is roughly found to be true (Fig. 1). Glasses corresponding to x = 1 and 2, glasses with low at % Sb, have a high value of ΔH_c and their corresponding (T_c-T_g) values are rather low. This indicates, once more, the particular situation of these compositions in comparison with ones with higher antimony content and it is probably related to a structural characteristic of the glass.

3. Activation energy for crystallization

When a glass is heated at a constant rate, crystal nuclei are formed at a temperature higher than the glass transition temperature and the crystal particles grow in size. The variation of crystal volume fraction is expressed by

$$dX/dt = K(1 - X)\alpha - (n - 1)$$

 $\times \exp[-1.052 \, mE/kT]$ (1)

where X is the crystal volume fraction, K is a constant and α the heating rate. n = m + 1 for a quenched glass containing no nuclei and n = m for a glass containing a sufficiently large nuclei. Also, m = 3 for three-dimensional growth of crystal particles, m = 2 for twodimensional growth and m = 1 for one-dimensional growth. The *n*-values can be obtained from the plot of $\ln[-\ln(1-x)]$ against $\ln \alpha$ at a specific temperature. Theoretically, the maximum value of *n* is 4 and minimum value is 1, and in these cases the corresponding *m* values must be 3 and 1, respectively. In order to obtain the activation energy Matusita *et al.* [2, 3] have written the expression

$$\ln \alpha = -1.052m/n E/(RT) - 1/n \ln[-\ln(1 - X)]$$

+ constant (2)

Thus the plot of $\ln \alpha$ against 1/T, where T is the temperature at which the crystal volume fraction

Figure 1 The composition dependence of (\blacklozenge) (T_c-T_g) of $(Se_{65}Te_{35})_{100-x}Sb_x \ 0 \le x \le 10$, at the heating rate $< 10 \ K \ min^{-1}$; and (\bigcirc) data of ΔH_c as a function of these glasses.

reaches a specific value, gives a straight line and the slope gives the value of 1.052(m/n)E. This plot is very similar to the Ozawa plot [4]. The activation energy can be obtained when the ratio m/n is known.

The rate of increase of X reaches its maximum at a temperature T_0 . Solving Equation 1 for d(dX/dt)/dt = 0, the following equation is obtained

$$\ln[\alpha^{n}/(T_{0})] = -1.052mE/(RT_{0}) + \text{ constant } (3)$$

which is very similar to the Kissinger [5] equation when n = m = 1. Rewriting Equation 2, it follows

$$\ln[-\ln(1-X)] = n \ln \alpha - 1.052 m E/(RT) + \text{constant}$$
(4)

The plot of $\ln[-\ln(1-X)]$ against 1/T gives another value of mE.

4. DSC experimental results

The crystallization data have been collected from DSC thermograms, obtained with different heating rates ($\alpha = 1, 2, 5, 10$ and 20 K min⁻¹) and different compositions (Se₆₅Te₃₅)_{100-x}Sb_x ($0 \le x \le 10$). Values of the slope of the curve ln α against 1/T, T being the onset temperature of the crystallization peak, that is $E_c = 1.052(m/n)/E$, have been calculated from a modified Ozawa-type plot (Fig. 2). The departure of experimental points from the calculated average value is expressed by a vertical bar. The values have been summarized as a function of composition in Fig. 3.

TABLE I Data for m, n and E_c for the glasses

Figure 2 Ln α as a function of $1000/T_c$ for $(Se_{65}Te_{35})_{100-x}Sb_x$ glasses. x: (\bigcirc) 0, (\triangle) 1, (+) 2, (\blacktriangle) 4, (\diamondsuit) 6, (\times) 8, (O) 10.

Figure 3 Composition dependence of $\Delta E_{\rm c}$ in glassy $({\rm Se}_{65}{\rm Te}_{35})_{100-x}{\rm Sb}_x$ alloys.

A knowledge of *m* and *n*, that is, some details of the crystallization process, are needed to evaluate E_c . Therefore, to evaluate E_c , *m*, *n* (and to determine the crystallization mechanism), the results were analysed using the method suggested specifically for non-iso-thermal crystallization by Matusita *et al.* [2, 3]. This was undertaken for the compositions x = 2 and 8 due to their particular position on Fig. 3.

5. Results for (Se₆₅Te₃₅)₉₈Sb₂ and (Se₆₅Te₃₅)₉₂Sb₈ compositions

The same heating rates were used as previously chosen to study $(Se_{65}Te_{35})_{98}Sb_2$. Much lower heating rates $(\alpha = 0.65, 1.25, 1.8 \text{ and } 2.5 \text{ K min}^{-1})$ have been used

Compositions	From $\ln[-\ln(1-X)]$ versus $1/T$ and versus $\ln \alpha$				From $\ln \alpha$ versus $1/T$ data. Ozawa modified		From $\ln(\alpha n/T_{20})$ versus $1/T_0$ data. Kissinger modified	
	$\frac{mE_{\rm c}}{(\rm kcalmol^{-1})}$	n	т	$E_{\rm c}$ (kcal mol ⁻¹)	$\frac{1}{m/nE_{\rm c}}$ (kcal mol ⁻¹)	$\frac{E_{\rm c}}{(\rm kcalmol^{-1})}$	$\frac{mE_{c}}{(\text{kcal mol}^{-1})}$	$E_{\rm c}$ (kcal mol ⁻¹)
$(Se_{65}Te_{35})_{98}Sb_2$ $(Se_{65}Te_{35})_{92}Sb_8$	132.4 153	3.15 4.5	2 3	66.2 51	44.91 31.4	70.7 47.1	150 144.4	75 48

Figure 4 Ln[$-\ln(1 - X)$] versus 1000/T for (Se₆₅Te₃₅)₉₈Sb₂ glass at different heating rates (K min⁻¹) indicated.

Figure 5 Ln[$-\ln(1 - X)$] versus ln α for (Se₆₅Te₃₅)₉₈Sb₂ glass at various temperatures: (1) 390.6 K, (2) 389.1 K, (3) 387.6 K, (4) 386.1 K, (5) 384.6 K, (6) 383.1 K, (7) 381.7 K, (8) 380.7 K.

Figure 6 Modified Kissinger plot of $\ln(\alpha^3/T_p^2)$ versus $1000/T_p$ of $(Se_{65}Te_{35})_{98}Sb_2$ glass.

low values of x (and then m is taken equal to 2) and

Figure 7 $\ln[-\ln(1 - X)]$ versus 1000/T for $(Se_{65}Te_{35})_{92}Sb_8$ glass at different heating rates (K min⁻¹) indicated.

Figure 8 Ln[$-\ln(1 - X)$] versus ln α for $(Se_{65}Te_{35})_{92}Sb_8$ glass at various temperatures: (1) 396.82 K, (2) 395.26 K, (3) 393.70 K, (4) 392.15 K.

Figure 9 Modified Kissinger plot of $(\ln(\alpha^4/T_p^2) \text{ versus } 1000/T_p \text{ of } (Se_{65}Te_{35})_{92}Sb_8 \text{ glass.}$

about 4 for higher values of x (and m = 3). Figs 6 and 9 refer to the Kissinger-type model taking into account the value of n already determined.

6. Conclusion

Results on thermal analysis measurements performed at various heating rates on glasses of the Se-Te-Sb system with compositions $(Se_{65}Te_{35})_{100-x}Sb_x$ with $0 \le x \le 10$ are reported and discussed. The crystallization behaviour of these glasses has been studied under non-isothermal conditions. The crystallization temperature varies from 360-450 K depending on the composition and heating rate. The composition dependence of several properties associated with the crystallization process, $(T_c - T_g)$, ΔH_c and E_c have been reported. A steep variation in these properties is seen for the $(Se_{65}Te_{35})_{98}Sb_2$ glass. ΔH_c as well as E_c are maximum when a small amount of antimony is added to the SeTe system. It is supposed that such addition leads to cross-linking of the chains to a small extent, creating a two-dimensional network. Further addition of antimony leads to a breaking of the chains and the formation of a large number of smaller chains. The natural tendency of antimony atoms is to create either a trigonal, bipyramidal or octagonal environment with more or less covalent bonds. Thus it is not surprising that antimony leads to a decrease in the glass-forming ability of Se-Te; it contributes to changing the weak bonding between the Se-Te polymeric chain to relatively strong covalent bonds. Our results suggest that Sb_2Se_3 structures apparently begin to form as the antimony concentration exceeds 1–2 at % or so. Then, crystalline growth tends to take a three-dimensional character (with n = 4). The values of E_c obtained by Ozawa, Kissinger or Matusita's approach are not very different from each other and lie in the same order as those reported in the literature.

References

- 1. M. MEDHI, G. BRUN, J. C. JUMAS and J. C. TEDENAC, J. Mater. Sci. 30 (1995) in press.
- 2. K. MATUSITA and S. SAKKA, *Phys. Chem. Glasses* **20** (1979) 81.
- 3. K. MATUSITA, T. KONATSU and R. YOKOTA, J. Mater. Sci. 19 (1984) 291.
- 4. T. OZAWA, J. Thermal. Anal. 2 (1970) 301.
- 5. H. E. KISSINGER, Anal. Chem. 29 (1957) 1702.

Received 27 May 1994 and accepted 28 April 1995